Essential obstacles to Helly circular-arc graphs

نویسنده

  • Martín Darío Safe
چکیده

A Helly circular-arc graph is the intersection graph of a set of arcs on a circle having the Helly property. We introduce essential obstacles, which are a refinement of the notion of obstacles, and prove that essential obstacles are precisely the minimal forbidden induced circular-arc subgraphs for the class of Helly circular-arc graphs. We show that it is possible to find in linear time, in any given obstacle, some minimal forbidden induced subgraph for the class of Helly circular-arc graphs contained as an induced subgraph. Moreover, relying on an existing linear-time algorithm for finding induced obstacles in circular-arc graphs, we conclude that it is possible to find in linear time an induced essential obstacle in any circular-arc graph that is not a Helly circular-arc graph. The problem of finding a forbidden induced subgraph characterization, not restricted only to circular-arc graphs, for the class of Helly circular-arc graphs remains unresolved. As a partial answer to this problem, we find the minimal forbidden induced subgraph characterization for the class of Helly circular-arc graphs restricted to graphs containing no induced claw and no induced 5-wheel. Furthermore, we show that there is a linear-time algorithm for finding, in any given graph that is not a Helly circular-arc graph, an induced subgraph isomorphic to claw, 5-wheel, or some minimal forbidden induced subgraph for the class of Helly circular-arc graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normal Helly circular-arc graphs and its subclasses

A Helly circular-arc modelM = (C,A) is a circle C together with a Helly family A of arcs of C. If no arc is contained in any other, thenM is a proper Helly circular-arc model, if every arc has the same length, then M is a unit Helly circular-arc model, and if there are no two arcs covering the circle, thenM is a normal Helly circular-arc model. A Helly (resp. proper Helly, unit Helly, normal He...

متن کامل

Clique graphs of Helly circular arc graphs

Abstract: Clique graphs of several classes of graphs have been already characterized. Trees, interval graphs, chordal graphs, block graphs, clique-Helly graphs are some of them. However, no characterization of clique graphs of circular-arc graphs and some of their subclasses is known. In this paper, we present a characterization theorem of clique graphs of Helly circular-arc graphs and prove th...

متن کامل

The clique operator on circular-arc graphs

A circular-arc graph G is the intersection graph of a collection of arcs on the circle and such a collection is called a model of G. Say that the model is proper when no arc of the collection contains another one, it is Helly when the arcs satisfy the Helly Property, while the model is proper Helly when it is simultaneously proper and Helly. A graph admitting a Helly (resp. proper Helly) model ...

متن کامل

On some subclasses of circular-arc graphs

The intersection graph of a family of arcs on a circle is called a circular-arc graph. This class of graphs admits some interesting subclasses: proper circular-arc graphs, unit circular-arc graphs, Helly circular-arc graphs and clique-Helly circular-arc graphs. In this paper, all possible intersections of these subclasses are studied. There are thirteen regions. Twelve of these are nonempty, an...

متن کامل

Proper Helly Circular-Arc Graphs

A circular-arc model M = (C,A) is a circle C together with a collection A of arcs of C. If no arc is contained in any other then M is a proper circular-arc model, if every arc has the same length then M is a unit circular-arc model and if A satisfies the Helly Property then M is a Helly circular-arc model. A (proper) (unit) (Helly) circular-arc graph is the intersection graph of the arcs of a (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1612.01513  شماره 

صفحات  -

تاریخ انتشار 2016